大型航天模型提高参数化建模方法的准确性和效率的方法
发布时间:2025-02-02 来源:/
大型航天模型的设计与制造中,如何进一步提高参数化建模方法的准确性和效率?
How to further improve the accuracy and efficiency of parametric modeling methods in the design and manufacturing of large-scale aerospace models?
在大型航天模型的设计与制造中,提高参数化建模方法的准确性和效率至关重要。以下将从多个方面进行阐述。
Improving the accuracy and efficiency of parametric modeling methods is crucial in the design and manufacturing of large-scale aerospace models. The following will elaborate from multiple aspects.
一、充分利用细分迭代算法
1、 Fully utilize the subdivision iteration algorithm
在提高参数化建模准确性方面,可以借鉴 “Improvement of the Pointing Accuracy of Shipborne Optical Measuring Equipment Based on a Subdivision Iteration Algorithm” 中提到的细分迭代算法。该算法通过建立参数化模型,能够校正船舶姿态坐标变换序列的误差以及多个误差源耦合引起的系统误差,从而提高船舶上空间测量设备的指向精度。在大型航天模型设计中,可以考虑类似的算法来处理模型中的各种误差,以提高建模的准确性。例如,对于模型中的几何形状误差、尺寸误差等,可以通过建立参数化的误差模型,并利用细分迭代算法进行校正。这样可以在建模过程中不断优化模型的准确性,使得最终的模型更加符合实际需求。
In terms of improving the accuracy of parametric modeling, we can refer to the subdivision iteration algorithm mentioned in "Improvement of the Pointing Accuracy of Shipborne Optical Measuring Equipment Based on a Subdivision Iteration Algorithm". This algorithm can correct errors in the transformation sequence of ship attitude coordinates and system errors caused by the coupling of multiple error sources by establishing a parameterized model, thereby improving the pointing accuracy of spatial measurement equipment on ships. In the design of large-scale aerospace models, similar algorithms can be considered to handle various errors in the model to improve modeling accuracy. For example, for geometric shape errors, dimensional errors, etc. in the model, a parameterized error model can be established and corrected using subdivision iterative algorithms. This can continuously optimize the accuracy of the model during the modeling process, making the final model more in line with practical needs.
二、采用参数化降阶模型(笔搁翱惭)
2、 Adopting a Parameterized Reduced Order Model (PROM)
“Efficiency Enhancement of Aeroelastic Optimization Process Using Parametric Reduced-Order Modeling” 中提到了参数化降阶模型(PROM)在气动弹性优化中的应用。在大型航天模型设计与制造中,可以考虑采用 PROM 来提高建模效率。PROM 能够在不损失准确性的前提下,降低模型的复杂度,从而减少计算时间。例如,在对航天模型进行结构分析时,可以利用 PROM 对复杂的结构进行简化,同时保留关键的力学特性。这样可以在保证分析准确性的同时,大大提高计算效率。
“Efficiency Enhancement of Aeroelastic Optimization Process Using Parametric Reduced-Order Modeling” The application of parameterized reduced order model (PROM) in aeroelastic optimization was mentioned. In the design and manufacturing of large-scale aerospace models, PROM can be considered to improve modeling efficiency. PROM can reduce the complexity of the model without sacrificing accuracy, thereby reducing computation time. For example, when conducting structural analysis on aerospace models, PROM can be used to simplify complex structures while retaining key mechanical properties. This can greatly improve computational efficiency while ensuring analysis accuracy.
三、开发面向大型客机概念设计的参数化 CAD 模型快速生成软件
3、 Develop a parameterized CAD model rapid generation software for conceptual design of large passenger aircraft
“大型客机概念设计的外形参数化 CAD 模型” 中研究出了一种针对大型客机 CAD 模型的外形参数化方法,并开发了一个面向大型客机概念设计的参数化 CAD 模型快速生成的软件。在大型航天模型设计中,可以借鉴这种方法,开发专门的参数化建模软件。通过软件的自动化生成功能,可以减少人工操作的错误,提高建模的准确性和效率。例如,可以利用软件中的参数化建模工具,快速生成航天模型的各个部件,如机身、机翼、发动机等。同时,软件还可以提供精度测试功能,确保生成的模型满足设计要求。
A parametric CAD model for the conceptual design of large passenger aircraft has been developed, and a software for rapid generation of parametric CAD models for large passenger aircraft conceptual design has been developed. In the design of large-scale aerospace models, this method can be used as a reference to develop specialized parametric modeling software. Through the automated generation function of software, errors in manual operations can be reduced, and the accuracy and efficiency of modeling can be improved. For example, parametric modeling tools in software can be used to quickly generate various components of aerospace models, such as the fuselage, wings, engines, etc. At the same time, the software can also provide precision testing functionality to ensure that the generated model meets design requirements.
四、探索组件化、参数化建模技术路线
4、 Explore the technological roadmap of componentization and parametric modeling
“数字卫星模型研制流程与建模方法研究” 提出了组件化、参数化建模技术路线和数字卫星模型接口与开发要求。在大型航天模型设计中,可以采用组件化的设计思想,将模型分解为多个独立的组件,每个组件都采用参数化建模方法进行设计。这样可以提高模型的可维护性和可扩展性,同时也便于团队协作。例如,在设计大型航天飞行器时,可以将飞行器分解为机身、机翼、发动机等组件,每个组件都有自己的参数化模型。当需要对某个组件进行修改时,只需要修改该组件的参数化模型,而不会影响其他组件。
The research on the development process and modeling methods of digital satellite models proposes a modular and parametric modeling technology roadmap, as well as requirements for the interface and development of digital satellite models. In the design of large-scale aerospace models, the modular design concept can be adopted, decomposing the model into multiple independent components, each of which is designed using parametric modeling methods. This can improve the maintainability and scalability of the model, while also facilitating team collaboration. For example, when designing a large spacecraft, the aircraft can be decomposed into components such as the fuselage, wings, and engines, each with its own parameterized model. When it is necessary to modify a component, only the parameterized model of that component needs to be modified without affecting other components.
五、建立可复用的参数化模型
5、 Establish a reusable parameterized model
“基于 UAF 的载人航天体系框架设计与建模” 中设计了可复用的参数化模型,增强了体系集成程度。在大型航天模型设计中,也可以建立可复用的参数化模型。通过对不同类型的航天模型进行分析,提取出通用的参数和结构,建立可复用的参数化模型库。这样在设计新的模型时,可以直接从模型库中调用合适的参数化模型,进行修改和优化,从而提高建模效率。例如,对于不同类型的卫星模型,可以建立一个通用的卫星参数化模型库,包括不同形状的卫星主体、太阳能电池板、通信天线等组件的参数化模型。当需要设计新的卫星模型时,可以从模型库中选择合适的组件模型,进行组合和优化。
A reusable parametric model has been designed in the framework design and modeling of manned spaceflight system based on UAF, enhancing the degree of system integration. In the design of large-scale aerospace models, reusable parameterized models can also be established. By analyzing different types of aerospace models, universal parameters and structures are extracted, and a reusable parameterized model library is established. In this way, when designing a new model, you can directly call the appropriate parametric model from the model library to modify and optimize, thus improving the modeling efficiency. For example, a universal satellite parametric model library can be established for different types of satellite models, including parametric models of satellite bodies of different shapes, solar panels, communication antennas, and other components. When designing a new satellite model, suitable component models can be selected from the model library for combination and optimization.
本文由 大型航天模型 友情奉献.更多有关的知识请点击 真诚的态度.为您提供为全面的服务.更多有关的知识我们将会陆续向大家奉献.敬请期待.
This article is a friendly contribution from a large aerospace model For more related knowledge, please click Sincere attitude To provide you with comprehensive services We will gradually contribute more relevant knowledge to everyone Coming soon.